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Phase Noise in Coupled Oscillators:
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Abstract—Phase noise in mutually synchronized oscillator sys-
tems is analyzed for arbitrary coupling and injection-locking
topologies, neglecting amplitude noise, and amplitude modulation
(AM) to phase modulation (PM) conversion. When the coupling
phase is chosen properly (depending on the oscillator model), the
near-carrier phase noise is reduced to1=N1=N1=N that of a single oscilla-
tor, provided the coupling network is reciprocal. This is proved in
general, and illustrated with specific cases of globally coupled and
nearest-neighbor coupled oscillator chains. A slight noise degra-
dation is found for unilaterally coupled (nonreciprocal) chains.
The 1=N1=N1=N reduction for reciprocal coupling applies over nearly the
entire range of free-running frequency distributions required for
beam-scanning, and is verified experimentally using a linear chain
of coupled GaAs MESFET voltage-controlled oscillators (VCO’s)
operating atXXX-band. The effect of a nonoptimum coupling phase
on the phase noise of the system is also studied. As the coupling
phase deviates from the optimum value, the phase noise increases
significantly near the locking range edge for noise offset frequency
near the carrier.

Index Terms—AM noise, coupling topology, noise admittance,
oscillators, phase noise, power spectral density.

I. INTRODUCTION

COUPLED oscillator systems possess synchronization
properties that may be suitable for certain millimeter-

wave power-combining and beam-scanning applications
[1]–[4]. In previous analytical and experimental work it has
been shown that robust locking favors a low-oscillator
design, which implies a large locking range. Unfortunately,
low -factors also imply larger phase noise. Military
applications for millimeter-wave sources in compact radar
or communications systems may require better than120
dBC/Hz noise-to-carrier ratio at 10 kHz offset. Similarly,
commercial digital communication systems place strict
constraints on the signal-to-noise ratio and the bit error rate
(BER) for high-fidelity transmission [5], [7]. In this paper,
the authors show that the total phase noise of the array is
significantly reduced compared to that of a single free-running
element in the array in direct proportion to the number of array
elements, provided the coupling network is designed properly.
For typical microwave FET oscillators, this result persists
even when the oscillators are detuned with respect to each
other, until the detuning is so large as to preclude mutual
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synchronization, at which point the phase fluctuations return
to their free-running values.

This analysis extends the authors’ prior work in coupled-
oscillator theory to include a noisy Van der Pol oscillator. This
is done by using a complexnoise admittance, first suggested in
[8], [9], which conveniently models the complexities [12] of a
typical oscillator. The resulting dynamic equations describing
the amplitude and phase fluctuations of the oscillators closely
resemble the authors’ prior (noiseless) work, and apply to
arbitrary broad-band coupling networks [13]. In the general
case, the equations describe the transformation of amplitude-
modulation (AM) and phase-modulation (PM) noise from
the noise admittance terms—corresponding to the real and
imaginary parts of the noise admittance, respectively, to the
individual oscillator output fluctuations. The equations cannot
be solved analytically. However, restricting attention to phase
noise and neglecting AM-to-PM conversion terms in the
analysis permits an analytical solution for simple coupling
networks, which accurately describes near-carrier noise for
many cases of practical interest.

Specific -element oscillator chains considered in this
paper are shown in Fig. 1, including global coupling and
nearest-neighbor coupling (bilateral and unilateral) configu-
rations. In each case, it is assumed that the independent
noise sources of the oscillators are mutually uncorrelated
but generate identical power spectra. The globally coupled
situation of Fig. 1(a) is analogous to the single-cavity multiple
device oscillator [14], and is treated here primarily as a
means for comparing the results against previously published
literature [8]–[10], [14]. The nearest-neighbor bilateral and
unilateral coupling topologies are relevant to recently proposed
power combining and beam-scanning applications [2], [3]. For
all reciprocal coupling topologies, it will be shown that the
total phase noise is reduced in proportion to , provided
the coupling phase is chosen correctly. As the coupling phase
deviates from this optimum value, the phase noise can in-
crease significantly near the locking range edge, depending
on the offset frequency from the carrier. The results are
verified experimentally using a linear chain of coupled GaAs
MESFET voltage-controlled oscillators (VCO’s) operating at

-band.

II. COUPLED OSCILLATOR NOISE THEORY

A. Noisy Oscillator Model and Array Dynamics

Previous work has demonstrated the utility of a simple
single-resonance negative-resistance oscillator model for array
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(a) (b)

(c)

Fig. 1. Coupling topologies considered in this paper (illustrated for a five-oscillator system). (a) Global coupling. (b) Nearest-neighbor bilateral coupling.
(c) Nearest-neighbor unilateral coupling.

Fig. 2. Parallel negative-conductance oscillator model with a complex noise
admittance.

analysis. This model is capable of generating all of the
observed synchronization phenomenon. Either a series or
parallel circuit is used, depending on the device characteristics;
if the device is best modeled as a negative resistance, a series
circuit is employed. If the device is best modeled as a negative
conductance, a parallel model is employed, as shown in Fig. 2.
Both models lead to similar synchronization properties. Noisy
oscillators can be modeled either through the addition of an
equivalent noise–current generator, or with an equivalent noise
admittance as shown in Fig. 2. It is
convenient to define a normalized admittance
with and , where the
normalization variable parameter is the oscillator load
admittance in the free-running state.

The terms and describe the in-phase and quadrature
component of the noise signal, respectively. For the single
oscillator case it will be shown that physically corresponds
to the oscillator amplitude fluctuations, while corresponds
to the phase fluctuations. For two or more coupled oscillators,
the nonlinear interaction gives rise to cross coupling between
the two types of noise. Use of the noise admittance obviates
a detailed description of the noise statistics and physical
origin, which is a useful simplification here since only a
relative comparison of total-array phase noise with that of the
individual oscillator is desired.

The oscillators are coupled through an arbitrary-port
network that is described by -parameters [13]. Once the

oscillator model has been specified as above, the dynamic
equations for amplitude and phase of each oscillator are
determined in a straightforward manner [13] giving

(1)

(2)

where , , , and are the amplitude, phase, free-running
frequency, and -factor of the th oscillator, respectively, and

and are the coupling parameters between theth and
th oscillators. These nonlinear coupled equations cannot be

solved analytically without approximation.

B. Solution for Phase Fluctuations

For noise analysis, the equations are perturbed by substi-
tuting and where
are the steady-state solutions to (1) and (2), and
are the amplitude and phase fluctuations of theth oscillator,
respectively. Assuming small fluctuations, the equations can
be linearized around and become

(3)



606 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 5, MAY 1997

(4)

where , half the 3-dB bandwidth of the
oscillator tank circuits (assumed identical to first order).

In previous papers [1], [13], the authors have shown that
it is desirable to operate the array using a coupling network
designed to give , so that for identical oscillators
and free-running frequencies the stable locked state has all
oscillators in-phase. This will be assumed to be the case here.
Also, the spectral characteristics of the noise fluctuations are
of most interest. Fourier transforming (3) and (4) gives

(5)

(6)

where the tilde () denotes a transformed or spectral variable,
and is the noise frequency measured relative to the carrier.
In (5), the second term of the right-hand side (RHS) represents
the AM noise transformed from all the oscillators to the
AM noise of the th oscillator, and the third term represents
conversion of PM noise to AM noise. Similarly in (6), the
first term of the RHS represents AM noise transformed to PM
noise, and the second term is PM-to-PM noise. Note that there
is no mutual transformation between the AM noise and PM
noise when the oscillators are in-phase, i.e., for all

. This result is consistent with that of [8] and [10].
One can write (5) and (6) in the following concise matrix

format:

AM AM PM AM
AM PM PM PM

(7)

where is the in-phase or AM noise-source
vector, and is the quadrature or PM noise-source
vector. For simplicity, focus here will be on the PM-to-PM
noise conversion, assuming all the steady-state amplitudes are

identical. Under these assumptions, (6) reduces to

(8)

The matrix form of (8) is

(9)

where

...
...

The matrix will reflect the coupling topology of the -
element coupled oscillator array. The phase fluctuations of
the individual oscillator are then determined by the matrix
equation

(10)

where . Since many of the coupling topologies
possess some intrinsic symmetry which leads to common
solutions for all of the phase fluctuations, it is useful to
simplify (10) by writing

(11)

where is an element of the matrix .
The power spectrum of the individual noise fluctuations

is given by , where the notation represents an
ensemble average. Evaluating these power spectra using (11)
leads to cross-power spectral densities of the form .
Assuming the quadrature noise sources, , are random
(ergodic) processes with zero time average, it can be shown
using the Wiener–Khintchine theorem [11] that

(12)

where is the Kronecker delta. The term is the
power spectral density of theth oscillator’s quadrature noise
source. It will be further assumed that all the oscillator noise
sources have the same power spectral density, so that

(13)

Furthermore, for notational convenience the notationwill
be hereafter dropped and the power spectrum will be written
simply as or , with the ensemble or time average
being implicitly understood.



CHANG et al.: PHASE NOISE IN COUPLED OSCILLATORS 607

Using (12), one can write the power spectral density of the
th-oscillator phase fluctuation (i.e., the phase noise) as

(14)

which indicates that theth element phase noise is found by
summing the magnitude square of the elements in theth row
of the matrix .

The combined output of all the array elements is the
most important quantity of interest in coupled-oscillator array
applications. Assuming the outputs are combined efficiently,
the combined output signal is given by

(15)

where the oscillators are locked to a common frequency.
Using the small fluctuation assumption allows (15) to be
written as

(16)

where

(17)

Using (11), one can write (17) as

(18)

Again using (12), one can write the total phase noise as

(19)

which indicates that the total phase noise is found by summing
the columnsof the matrix . Many of the commonly encoun-
tered coupling matrices have properties that make carrying out
the indicated sums in both (14) and (19) straightforward.

C. Free-Running Oscillator Result

The noise properties of the -coupled oscillators relative
to a single free-running oscillator are desired. The noise

properties of a single oscillator are found by setting
such that there is no mutual coupling between the oscillators.
Then, (5) and (6) become

(20)

and

(21)

Therefore, the AM noise for single oscillator is

(22)

where and are the free-running oscillator amplitude, and
the steady state amplitude after coupling, respectively. The PM
noise of single oscillator is

(23)

These results have the same form as those in [15], [16]. Note
that for most oscillators, noise close to the carrier ( )
is dominated by phase noise. This somewhat justifies the
neglect of amplitude noise and AM-to-PM conversion, even
for nonuniform phase progressions. The result (23) features
prominently in the following derivations.

III. GLOBALLY COUPLED OSCILLATOR ARRAYS

The validity of this formulation can be tested by comparing
it to the globally coupled oscillator array (the completely
coupled system [5]) which has been treated elsewhere [8]–[10],
[14]. This case [illustrated in Fig. 1(a)] corresponds to a
coupling coefficient for any and . Assuming the
oscillators are all in phase, (8) becomes

(24)

where is half the total locking range [1].
Putting (24) in the matrix form (9) gives the PM-to-PM noise
matrix for global coupling, as shown in (25) at the bottom of
the page, where . The inverse matrix can be

...
...

...
...

...
...

(25)
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easily found for this case and is given by

...
...

...
...

...
...

(26)

In this case it is clear that

for all (27)

so, from (17), the total output phase noise is

(28)

Comparing (28) with the single-oscillator noise result in (23)

we find

(29)

The total PM noise for globally coupled oscillators becomes

of that of a single oscillator. This result agrees with

[8]–[10], [14], and suggests that the mutual synchronization

does not lead to any significant correlation of the oscillator

phase fluctuations.

The noise property of the individual oscillators in the

globally coupled array is also of interest. From (14) and (26)

the power spectral density for theth oscillator in the array

is found as

(30)

Again, the primary interest is with the phase noise near the

carrier, so that , in which case

(31)

At the other extreme (far from the carrier), the individual
oscillators approach the free-running noise properties

(32)

To summarize: after adding the coupling circuits, the individ-
ual oscillators and the total array output have a phase noise
reduction near the carrier frequency in direct proportion to
the number of oscillators, . The PM noise of the individual
oscillators far from the carrier frequency is not affected by the
coupling circuits and still has the same noise properties as the
original oscillator.

IV. NEAREST-NEIGHBOR BILATERALLY COUPLED CHAINS

A case of practical interest for microwave oscillator arrays is
a nearest-neighbor mutually coupled coupled system, which is
simple to construct and is known to possess desirable attributes
for beam-scanning [1], [2], [13]. This case [shown in Fig. 1(b)]
is described by the coupling parameters

otherwise
(33)

where is a constant that can be related to the circuit design
[13]. To keep the math tractable one will also assume a
constant phase progression along the array so that

. As described in the authors’ previous papers [1], [2],
this phase progression can be established by varying the free-
running frequencies of both the end oscillators, while keeping
the central elements at a common free-running frequency.

For this configuration the matrix in (9) is shown in (34)
at the bottom of the page, where .
The inverse of is not easily expressed for the general case.
However, note that from the relation one
can write

(35)

...
...

...
...

...
...

...
...

(34)
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By inspection of (34), one can easily see that the term in
parentheses, which is the sum of theth column of is simply

, for all . Therefore, (35) gives

(36)

This is the sum of the th column of the matrix as required
for the total noise expression (19), and is exactly the same
result that was obtained in the globally coupled system (27).
Therefore, the total noise is again given by (28), which implies
a noise reduction of , independent of the phase difference

.
The result for the individual oscillator phase fluctuations

appears more complicated. Standard matrix methods [17], [18]
can be used to evaluate the inverse of (34) for specific numbers
of oscillators from which the phase noise can be determined
from (14). For example, for :

(37)

For :

(38)

For :

(39)

where and are real coefficients. These results can be
extrapolated to the general case by induction

(40)

Recall that . Again, the interest is
in phase noise near the carrier, in which case the value of

is very small for most microwave oscillators and
coupling configurations. Therefore, as long as

(41)

Only when (i.e., , which
corresponds to the maximum stable phase deviation [1]), does
the phase noise deviate significantly from the result in (41),

Fig. 3. Individual oscillator phase noise (normalized to an isolated
free-running oscillator) versus phase difference between the adjacent
oscillators in a two bilaterally coupled oscillator system with� = 0.
The noise-reduction factor depends both on the phase difference between
the oscillators and the frequency offset from the carrier. However, for most
systems, the frequency near the carrier! � �!lock is of most interest where
the reduction is�1=2 over the entire locking range. Note that this isnot the
total output phase noise, which isalwaysreduced by a factor of 1/2 (see text).

at which point

(42)

This is illustrated in Fig. 3 for a two-oscillator system.
The figure shows the phase noise reduction versus oscillator-
phase difference for several noise offset frequencies, which
are specified with respect to the locking range. As a practical
example, noise requirements are often specified in the range
of 1–100-kHz offset, whereas a typical number for the locking
range in a coupled-oscillator array might be on the order
of 100 MHz at -band. Therefore, the individual oscillator
noise reduction can be taken as to a very high degree
of accuracy for almost the entire range of allowable phase
differences. It should be stressed that Fig. 3 and this discussion
are concerned with the noise of a single oscillator in the
array and not the total-array output noise, which, as shown
previously in (29), is always , irrespective of the phase
difference and offset frequency.

To summarize, the PM noise of each oscillator is reduced
to of its original free-running PM noise within nearly the
entire locking range, or equivalently nearly the entire range
of allowed phase shift . At the locking range edge, the
PM noise of each oscillator rapidly returns to its free-running
value. The locking effect does not affect each oscillator PM
noise outside the locking range.

V. UNILATERALLY INJECTION-LOCKED OSCILLATORS

Another coupling topology that has been reported [3] is the
unilaterally injection-locked chain, shown in Fig. 1(c). In this
case, each successive oscillator in the chain is slaved to the
previous oscillator. The first oscillator in the chain, ormaster
oscillator, governs the output frequency and, presumably, the
output noise as well. The phase progression can be controlled
in this case by manipulating the free-running frequencies of the
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individual VCO’s. This situation is described by the coupling
parameters

otherwise
(43)

Assuming the oscillators are all in-phase, the PM noise matrix
is given by

...
...

...
...

...
...

...
...

...
...

...
...

(44)

This matrix can be inverted analytically to give (45), shown
at the bottom of the page, where . Since the
rows and columns form geometric series, the sums in (14) and
(19) can be evaluated analytically. The resulting expression
is complicated for the case of total noise. Approximating for
small , one finds

.

(46)

From (19), the total output phase noise is approximately

(47)

So there is a slight noise degradation which increases quadrat-
ically away from the carrier, and linearly with increasing
array length. For most arrays this would be a small effect
since the near-carrier noise is of most concern, for which

. At the carrier frequency, the noise is just

that of the first-stage oscillator. The total noise could be
significantly reduced by making the first-stage oscillator a
low-noise source.

The phase noise of the individual oscillators in the array
can be evaluated without approximation to give

(48)

Therefore, one can conclude that the unilateral injection lock-
ing does not improve the phase noise for the total array
or the individual elements in the array. A low phase noise
in this case can only be obtained by a low-noise master
oscillator.

VI. GENERAL RESULTS FOR

RECIPROCAL COUPLING NETWORKS

The previous sections illustrated the importance of the
coupling network in determining the noise fluctuations in the
oscillator array. The interesting fact that both the globally
coupled array and the nearest-neighbor coupling network both
lead to a reduction in the total phase noise suggests that
this may be a property of reciprocal coupling networks in
general, and not merely a special case. This will be proven
in this section.

When the oscillators are described by parallel-resonator
equivalent circuits, it has been shown in [13] that it is
most appropriate to describe the-port coupling network in
terms of admittance parameters (Fig. 4). The normalized
coupling coefficients in this case are given by

(49)

where , , and are the oscillator output load admit-
tance, the magnitude of coupling coefficient, and the coupling
phase.

Assuming that the -port coupling network is composed of
linear time-invariant elements (resistors, capacitors, inductors,
transmission lines, etc.), the coupling network is reciprocal
such that [6]

(50)

...
...

...
...

...
...

...

(45)
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Fig. 4. TheN -port reciprocal coupling network.

Therefore, a reciprocal coupling network requires that

(51)

For -coupled oscillators with (or some multiple

of ), the elements of matrix from (9) are

.

(52)

If the coupling network is reciprocal, then from (51) one can
see that , and from (52) one has

(53)

Therefore, using (35) gives

(54)

and substituting into (19), the total phase noise ofrecipro-
cally coupled oscillators is

(55)

Therefore, the total PM noise of oscillators coupled
through anarbitrary reciprocal coupling network always leads
to a reduction in the total phase noise. This is a useful
result which applies to two-dimensional (2-D) arrays, coupling
loops, and other structures satisfying the reciprocity condition
(50).

VII. PHASE NOISE OF COUPLED OSCILLATORS

WITH SMALL NONZERO COUPLING PHASE

In the previous sections one has assumed that the coupling
phase was adjusted so that . In practice, it is difficult to

achieve this exactly. In this section, one will attempt to study
the effect of nonzero . From (4) with nonzero , assuming
identical oscillator amplitudes (12), and neglecting the AM-
to-PM noise conversion, the elements of the coupling matrix

are found to be

(56)

The coupling network is assumed reciprocal (i.e., ).
It has been shown [1] that the free-running frequencies in the
array can always be chosen to establish the in-phase condition
(i.e., ), even when the coupling phase is nonzero. For
this particular phase distribution, and

(57)

From (35), the coupled oscillator array has the same properties
as the array with (or )

(58)

However, when the adjacent phase difference between the
oscillators is nonzero, then the coupling matrix is no longer
symmetrical ( ). Therefore, the results of the previous
section no longer apply, and the noise properties of the array
will deviate from that predicted by (58). Unfortunately,
the matrix can no longer be inverted analytically in the
general case, and, in fact, is difficult to do even for small
arrays. The two-oscillator system will be examined in an
effort to determine the qualitative behavior of the arrays
for nonzero .

Following the procedures established in the previous sec-
tions, the total phase noise for two mutually coupled oscilla-
tors, using the coupling matrix in (56), becomes

(59)

This expression is plotted in Fig. 5 at a fixed coupling phase
of , for several different offset frequencies, versus
the phase difference between the two oscillators. Close to
the carrier, the total noise peaks dramatically at the edges of
the locking range, but approaches a finite value depending
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Fig. 5. Total phase noise (normalized to an isolated free-running oscillator)
versus phase difference between the adjacent oscillators in a two bilaterally
coupled oscillator system with� = 10�. Close to the carrier, the total noise
peaks dramatically at the edges of the locking range, but approaches a finite
value depending on the magnitude of the coupling phase and the offset from
the carrier. Far from the carrier, the noise is not significantly affected by the
coupling phase, and a noise reduction of one-half is observed over nearly the
entire locking range.

Fig. 6. Total phase noise (normalized to an isolated free-running oscillator)
versus phase difference between the adjacent oscillators in a two bilaterally
coupled oscillator system for a number of different coupling phases at
one particular offset frequency close to the carrier. The total noise peaks
dramatically at the edges of the locking range when� deviates from zero.
As � is close to zero, the total phase noise is not significantly affected by
the coupling phase, and a noise reduction of one-half is observed over nearly
the entire locking range.

on the magnitude of the coupling phase and the offset from
the carrier. Far from the carrier, the noise is not significantly
affected by the coupling phase, and a noise reduction of 1/2 is
observed over nearly the entire locking range. Similarly, Fig. 6
shows the total noise versus phase difference for a number of
different coupling phases at one particular offset frequency.

The general behavior exhibited in Figs. 5 and 6 are expected
to hold for large arrays, at least qualitatively. One complica-
tion, however, is that the range of allowed (stable) phase shifts
depends strongly on the coupling phaseand the number
of the oscillators, and is no longer in
general. Therefore, a numerical computation of array noise
must first involve finding solutions to the dynamic equations
(2) for a given set of free-running frequencies, deciding which
of these is stable, and then computing the inverse coupling
matrix to determine the noise properties.

Fig. 7. Individual oscillator phase noise (normalized to an isolated
free-running oscillator) versus phase difference between the adjacent
oscillators in a two bilaterally coupled oscillator system with� = 10�.
Near the carrier (! � �!lock), the individual noise shows a reduction of
one-half near the center of the locking range, and increasing dramatically
near the locking band edge. Far from the carrier (i.e.,! � �!lock) the
individual noise spectrum returns to its free-running value.

Fig. 8. Diagram of five-element coupled oscillator array.

The noise property of the individual oscillators in the two
mutually coupled oscillators with is also of interest.
The individual oscillator phase noise is found as

(60)

This expression is plotted in Fig. 7 for , for a range
of offset frequencies. Near the carrier ( ), the
individual noise is identical to that of (59), showing a reduction
of one-half near the center of the locking range, and increasing
dramatically near the locking band edge. Far from the carrier
(i.e., ) the individual noise spectra returns to its
free-running value.

VIII. E XPERIMENTAL RESULTS FOR

NEAREST-NEIGHBOR COUPLING

A five-element linear coupled oscillator chain was built for
experimental verification of the theory for a bilaterally coupled
array. This is shown in Fig. 8, and is a similar design to previ-
ously reported work by the authors [13]. The array is composed
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Fig. 9. Phase noise measurement setup using a frequency discriminator method.

of five varactor-tuned MESFET VCO’s with a nominal tuning
range of 8.0–9.0 GHz. These VCO’s use NE32184A packaged
MESFET’s and MA-COM 46 600 varactor diodes. The VCO’s
are coupled together by a one-wavelength (at about 8.5-GHz)
microstrip transmission lines and are resistively loaded with
two 75- chip resistors as shown in Fig. 8. As described in
[13], this technique provides coupling parameters and

. Each oscillator is designed to deliver power to
a 50- load. The oscillators were “connectorized” using SMA-
to-microstrip transitions, which allowed for simple testing, and
later, connection to an external five-element patch antenna
array.

As described in [2], varying the end-element free-running
frequencies induces a constant phase progression along the
array. Representative radiation patterns for the experimental
array for various end-element detunings are found in [2],
[4]. When all elements are set to a common free-running
frequency, the elements are nominally in phase and a broadside
beam is expected. It was found that the array can remain
locked within a maximum end-element detuning of approx-
imately 125 MHz, which gives an estimation of the locking
range.

Because of VCO’s inherent poor phase noise behavior and
comparatively large thermal drift, a frequency discriminator
technique was used for the phase noise measurement. This
experimental apparatus is illustrated in Fig. 9. The frequency
discriminator is implemented with a delay line and a phase
detector. Due to the high insertion loss of the delay line at
microwave frequencies, the signal to be measured was first
downconverted to a 1.0-GHz intermediate frequency. The
source acting as the local oscillator has at least 40-dB lower
phase noise than the signal to be tested, so its phase noise
contribution to the final measurement result can be neglected.
The down-converted signal is amplified by a power amplifier
and split into two channels. The signal in one channel is
delayed relative to the other. The unequal delay converts
the frequency fluctuation in the signal under test to a phase
fluctuation. Determination of the delay time involves a tradeoff
among the noise floor, offset frequency, and the tolerable
insertion loss. In this case, a 23.0-ns delay time was chosen,
giving a noise floor at least 40-dB lower than the expected
phase noise of the signal under test up to approximately a 6-
MHz offset frequency. In the other channel, a phase shifter is
used to maintain quadrature between the signals in these two
channels.

Fig. 10. Comparison of the free-running PM noise for each of the five
oscillators in the experimental array with the total PM noise measured in
the far field. The theoretical noise reduction is shown for comparison, which
is the average free-running noise divided by five.

This apparatus was used to characterize both the total output
array noise and the individual oscillator fluctuations in a
variety of conditions. For total array noise, the oscillators
were connected to a patch antenna array and the output signal
was measured with a detector in the far field. Isolators were
placed between the oscillator output and the antenna feed to
maintain a 50- load impedance. For the individual oscillator
measurements, the oscillators were connected directly to the
measurement system using SMA cables. Fig. 10 shows that
the phase noise of the individual array elements when free-
running, and the total array output under synchronized condi-
tions (all oscillators set to a common free-running frequency).
The total output phase noise is clearly reduced as compared to
those of the free-running oscillators. In this and all subsequent
figures, the noise in the range of offset frequencies from 1
kHz to 0.5 MHz is shown, which is a range of common
interest.

The theoretical result using (29) is shown for comparison,
and shows close agreement to the measurements. The small
difference between the measurement and theoretical values
could be due to a number of influences that are neglected
in this analysis, including the assumption of the nearest
neighbor coupling, the approximation for total output phase
noise (19), possibly small nonzero coupling phase ( ),
and the neglect of transformation of amplitude noise to phase
noise.
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Fig. 11. Phase noise of the array output and single oscillator under locked
conditions.

Fig. 12. The total phase noise of the array with and without detuning of
both end oscillators. The graph confirms that inter-element phase shift does
not significantly change the phase noise-reduction factor.

Fig. 11 shows that the phase noise of the individual oscil-
lator in the array, under locked conditions, is also reduced by
the same factor as the array. This agrees with the prediction
of (41), which is expected here since the range of offset
frequencies is much smaller than the locking range by orders
of magnitude.

The previous two figures are for the special case of in-
phase (or nearly in-phase) operation of the array elements. The
nonzero phase progression can be established by detuning the
end-elements in the array. The influence of this progressive
phase shift on the total output noise is shown in Fig. 12,
and confirms again the theoretical prediction that the noise
reduction factor is independent of the phase difference, within
experimental uncertainty, over much of the allowable range
of phase shifts.

IX. CONCLUSIONS

Analysis of phase noise near the carrier in coupled-oscillator
arrays with parallel resonator model and has been
analyzed for a few common coupling topologies, and a re-
duction proportional to the number of oscillators is found in
each case. The total phase noise ofbilaterally reciprocal
coupled oscillators with also shows the reduction
of without using the assumption of nearest-neighbor

coupling. Such general results can cover any arbitrary coupling
circuit, such as the bilaterally coupled loop and 2-D coupled
oscillators. The effect of small nonzero coupling phase
on the phase noise of the array and individual oscillator is
studied and the phase noise deteriorates as the adjacent phase
difference between oscillators approaches the locking range
edge. Measurements for a small MESFET oscillator array at

-band confirm the noise reduction.
This paper has neglected the influence of AM noise, which

will affect the PM results in the case of a nonzero phase
progression. Furthermore, AM noise does not necessarily
decrease with increasing numbers of oscillators [16] and,
therefore, must be examined to determine possible limitations
on array size. The analysis presented here also neglects possi-
ble correlations between the oscillator noise sources, and the
influence of nonuniform amplitude and phase distributions,
but these are thought to be minor effects in a practical
sense. Although the general case involving arbitrary arrays
and frequency distributions is impossible to treat analytically,
it can be treated computationally using the dynamic equations
described at the beginning of the paper. This will probably be
necessary for 2-D arrays of oscillators [19], even for simple
topologies, due to the mathematical complexity of the coupling
matrix.
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